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Abstract� Many programming languages have been developed and im	
plemented for mobile code environments� They are typically quite ex	
pressive� But while security is an important aspect of any mobile code
technology� it is often treated after the fundamental design is complete�
in ad hoc ways� In the end� it is unclear what security guarantees can
be made for the system� We argue that mobile programming languages
should be designed around certain security properties that hold for all
well	formed programs� This requires a better understanding of the rela	
tionship between programming language design and security� Appropri	
ate security properties must be identi�ed� Some of these properties and
related issues are explored�

An assortment of languages and environments have been proposed for mobile
code� Some have been designed for use in executable content and others for use
in agents ���� ���� Parallel e�orts in extensible networks and operating systems
have also focused attention on language design for mobility� These e�orts include
work on active networks ���� �	�� the SPIN kernel �
� ��� and Exokernel �	�� What
these e�orts have in common is a need for security�

We can roughly separate security concerns in this setting into code security

and host security� The former is concerned with protecting mobile code from un�
trusted hosts while the latter is concerned with protecting hosts from untrusted
mobile code� This may seem a bit articial since one might like to model security
more symmetrically�� Nonetheless� it is a useful distinction for now� The code
security problem seems quite intractable� given that mobile code is under the
control of a host� For some proposals and a discussion� see �
�� 
�� ���� In the
remainder of this paper� we treat only the host security problem�

� Host Security

Our view of the problem is that mobile code is executed on a host which must
be protected from privacy and integrity violations� As far as privacy goes� the
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� One can imagine a model that does not distinguish mobile code from a host� treating
both as mutually suspicious parties�



host has private data that the code may need to perform some expected task�
The host wants assurance that it can trust the code not to leak the private
data� This is the classical view of privacy �
��
��� As for integrity� the host has
information that should not be corrupted� Integrity� in general� demands total
code correctness� After all� corrupt data can simply be the result of incorrect
code� There are� however� weaker forms of integrity ����

We believe that an important characteristic of the mobile code setting is
that the only observable events are those that can be observed from within a
mobile program using language primitives and any host utilities� There are no
meta�level observers of a mobile program�s behavior such as a person observing
its execution behavior online� Still� depending on the language� leaks can occur
in many di�erent ways� some being much more di�cult to detect than others�

��� Security Architectures

A common approach to host security is to monitor the execution of mobile
code� You build an interpreter �or virtual machine� and slap the hands of any
code that tries to touch something sensitive� The interpreter obviously needs
to know whether hand slapping is in order so it might appeal to some sort of
trust framework to decide� This arrangement is often called a �security archi�
tecture�� Architectures are growing quite elaborate as the demand for less hand
slapping rises� An example is the security architecture of the Java Developer�s
Kit JDK��
 ����� It blends some proven concepts� such as protection domains�
access control� permissions� and code signing� to allow applets more room to
maneuver� Netscape�s �Object Signing Architecture� takes a similar approach�

One begins to wonder how much of these security architectures is really
necessary� Are they a response to a need for host security given mobile programs
written in a poorly�designed mobile programming language� Perhaps they can
be simplied� It would seem that this is possible if mobile code is written in a
language that ensures certain security properties statically�

For example� suppose that all well�typed programs have a secure �ow prop�
erty and that you know a certain program� needing your personal identication
number �PIN�� is indeed well typed� Then that program respects the privacy of
your PIN and there is no need to check at runtime whether the program has
permission to read it�

Our claim is not that security architectures will no longer have a role in
the future� We feel their role will simply change and be more formally justied�
For example� they might carry out certain static analyses or proof checking�
perhaps along the lines of proof�carrying code �
��� It should be possible� for
a given language� to more clearly identify the role of the security architecture�
Certain desirable properties might be provable for all well�formed programs in
the language� in which case some security checks can go away�

There are many di�erent facets of mobile language design that in�uence
security in some way� For example� access control mechanisms �encapsulation�
visibility rules� etc�� are important� We will limit our attention to some of the
issues that impact host privacy and integrity� On the integrity side� we look at






type safety � Type safety is often said to be a key ingredient for security in Java
and for safe kernel extensions written in Modula�� �
�� Today� some languages like
Standard ML evolve with formal treatments of the type system and semantics
developed along the way� This allows one to give formal accounts of type safety
that evolve as well� Other languages� like Java� lack this sort of formal treatment�
Java has grown so rapidly that one quickly loses grasp of the impact of certain
features on key properties like type safety�

Then we explore the relationship between privacy and language design� There
are many ways mobile code can leak secrets� We start by examining information
channels in a deterministic language� We look at how they are in�uenced by
timing� synchrony� and nontermination� Then we consider channels in a simple
concurrent language with shared variables� Some of these channels arise in very
subtle ways� For example� they can arise from contention among processes for
shared resources� like CPU cycles�

� Type Safety

What is type safety� Consider the following description from a Java perspective�

The Java language itself is designed to enforce security in the form of
type safety� This means the compiler ensures that methods and programs
do not access memory in ways that are inappropriate �i�e� dangerous�� In
e�ect� this is the most essential part of the Java security model in that
it fundamentally protects the integrity of the memory map�

Secure Computing with Java� Now and the Future�

���� JavaOne Conference�

In Java� for example� code should not somehow be able to coerce a reference of a
user�dened class to one of a system class like SecurityManager which the run�
time system �Java Virtual Machine� consults for access permissions� Obviously�
this leads to trouble�

So at the heart of type safety is a guarantee against misinterpretation of
data�some sequence of bits being misinterpreted by an operation� This has
long been recognized as a serious computer security problem� In a well�known
report published twenty�ve years ago� Anderson describes a way to penetrate a
time�sharing system �HIS ����GCOS III� based on the ability to execute a user�s
array contents with an assigned GOTO statement in Fortran ���� The statement
can misinterpret its target� the contents of an arbitrary integer variable� as an
instruction� Today we see the same sort of problem in a di�erent context �
���

��� Type Preservation

An important property related to type safety is the idea of type preservation�
Type preservation is frequently confused with type soundness in the literature�
Soundness is a statement about the progress a program�s execution can make if
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the program is well typed� Type preservation� on the other hand� merely asserts
that if a well�typed program evaluates successfully� then it produces a value of
the correct type� It is usually needed to prove soundness� For instance� you may
know that an expression� with some type� evaluates to a value� but the value
must have a specic form in order for evaluation to proceed� Type preservation
gives you that the value has the same type as the expression� and with some
correct forms typing lemma� you know that only values of the form needed have
that type�

The following is a typical type preservation theorem� If � is a memory� map�
ping locations to values� and � is a location typing� mapping locations to types�
then type preservation is stated as follows �����

Theorem� �Type Preservation�� If � � e � v� ��� � � e � � � and � � �� then
there exists �� such that � � ��� �� � ��� and �� � v � � �

The rst hypothesis of the theorem states that under memory �� a closed expres�
sion e evaluates to a value v and a memory ��� Now e may contain free locations�
hence e is typed with respect to a location typing � which must be consistent
with �� that is� � � �� Evaluation of e can produce new locations that wind up
in v� so v is typed with respect to an extension �� of ��

As one can clearly see from the theorem� whether a language exhibits this
property depends on the type system and the semantics� In some cases� we might
expect that the type system needs to change if the property does not hold� But
the semantics itself may be to blame� For instance� consider the C program in
Figure �� When compiled and executed� �c evaluates to a signed integer quantity�

char �c�

f�� �char cc � �a�� c � �cc��

g�� �int i � 	

��

main�� �f��� g��� printf���c��c���

Fig� �� Dereferencing a dangling pointer

yet it has type char� If a C semantics prescribes this behavior� then we cannot
prove type preservation with respect to that semantics� the C language says this
program is unpredictable� This is one place where type preservation and C col�
lide�� A formal C semantics should be clear about the outcome of dereferencing
a dangling pointer� if this is considered �normal� execution� so that type preser�
vation can be proved� Otherwise� it should specify that execution gets stuck in
this situation� again so that type preservation holds� In the latter case� an imple�
mentation of C would be required to detect such an erroneous execution point if
that implementation were safe� A safe �faithful� implementation guarantees that
every execution is prescribed by the semantics� so that programs cannot run in

� Thus� perhaps� it is not surprising that the SPIN group abandoned its attempts to
de�ne a �safe subset of C�� adopting Modula	� instead ����
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ways not accounted for by the semantics� This usually requires that an imple�
mentation do some runtime type checking unless it can be proved unnecessary
by a type soundness result�

Remark� Although a lack of pointer expressiveness is in general a good thing
from a safety viewpoint� manifest pointers �references� are still a substantial
security risk� A runtime system might accidentally provide an application a ref�
erence to a system security object that must remain invariant� This was demon�
strated in Java for JDK���� Its entire trust framework� based on digitally�signed
code� was undermined when it was discovered that applications could obtain a
reference to a code signers array��

��� Type Soundness

Type preservation theorems usually talk about successful evaluations� Their hy�
potheses involve an assumption about an evaluation proceeding in some number
of steps to a canonical form� But this may not adequately address a type sys�
tem�s intentions� An objective of a system might be to guarantee termination or
to ensure that programs terminate only in specied ways �e�g� no segmentation
violations��� What is needed is a precise account of how a well�typed program
can behave when executed� In other words� we want a type soundness theorem
that species all the possible behaviors that a well�typed program can exhibit�

Traditional type soundness arguments based on showing that a well�typed
program does not evaluate to some special untypable value are inadequate for
languages like C and Java� There are many reasons why programs written in
languages like Java and C may produce runtime errors� Invalid class formats
in Java and invalid pointer arithmetic in C are examples� A type soundness
theorem should enumerate all the errors that cause a well�typed program to
get stuck �abort� according to the semantics� These are the errors that every

safe implementation must detect� One regards the type system as sound if none
of these errors is an error that we expect the type system to detect� This is
essentially the traditional view of type soundness as a binary property� But a
key point to keep in mind is that whether a given type system is sound really
depends on our expectations of the type system� Though it may be clear what we
expect for languages like Standard ML� it is less clear for lower�level languages
like C and assembler�

For example� we give a type system for a polymorphic dialect of C in ���� �
��
The type soundness theorem basically says that executing a well�typed program
either succeeds� producing a value of the appropriate type� fails to terminate� or
gets stuck because of an attempt to

� It is interesting to consider what sort of proof would have revealed the problem� One
strategy would be to try �nding a P	time reduction from compromising the private
key used in a digital signature to executing untrusted code� It would also establish
a computational lower bound on executing untrusted code using JDK����

� Such properties are important in situations where you need guarantees against cer	
tain faults� An example is isolating execution behind trust boundaries �����
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� access a dead address�
� access an address with an invalid o�set�
� read an uninitialized address� or
� declare an empty or negative�sized array�

The rst two errors are due to pointers in the language� Now one may expect the
type system to detect the rst error in which case our type system is unsound�
However� if one believes it is beyond the scope of a type system for C� then our
type system is sound� Clearly if the list included an error such as an attempt to
apply an integer to an integer� then the type system would generally be regarded
as unsound�

A better way to look at type soundness is merely as a property about the
executions of programs that the type system says are acceptable� This allows us
to compare type systems for a language by comparing their soundness properties�
Some may be weaker than others in that they require implementations to check
types at run time in order to remain safe� It is also useful for determining whether
a particular language is suitable for some application� Some of the errors listed
in a formulation of soundness may be among those that an application cannot
tolerate� Further� and perhaps most importantly� it identies those errors that
an implementation must detect in order to safely implement the semantics� For
instance� a safe implementation of C should trap any attempt to dereference a
dangling pointer� Most C implementations are unsafe in this regard� One expects
Java implementations to be safer� but despite all the attention to typing and
bytecode verication� the current situation is unfortunately not as good as one
might imagine�

Consider the Java class in Figure 
�� The class modies itself by putting
a CONSTANT Utf� type tag for x in that part of the constant pool where a
CONSTANT String type tag for x is expected by the ldc �load from constant
pool� instruction� Method exec gets a copy of itself in the form of a bytecode
array� The class is well typed� yet it aborts with a �segmentation violation� �core
dump� in JDK������ even when Java is run in �verify� mode� Verication of the
modied bytecodes does fail using the verify option of the Java class disassembler
javap� One would expect it to also fail for the bytecodes dynamically constructed
in exec� leading to a VerifyError when class SelfRef is run� Instead we get a
core dump� So the JDK����� implementation of Java is unsafe�

Perhaps making class representations available in bytecode form needs to
be reconsidered� It becomes quite easy to dynamically construct classes that
are di�cult to analyze statically for security guarantees� Self�modifying code� in
general� makes enforcement of protection constraints di�cult� if not impossible�
Channel command programs in the M�I�T� Compatible Time�Sharing System
�CTSS�� for instance� were years ago prohibited from being self�modifying for
this reason �
	��

� A bit of history� The class stems from an attempt to implement an active network in
Java� Active programs migrate among servers that invoke their exec methods� An
active program maintains state by modifying its own bytecode representation prior
to being forwarded� Yes� it�s a hack�

�



public class SelfRef implements ActiveProgram �

final String x � �aaba��

public void exec�byte�� b MyLoader loader� throws Exception �

if �b���� �� �x��� � �� CONSTANT�String

b���� � �x��� �� set CONSTANT�Utf�

b���� � �x���

b���� � �x���

Class classOf � loader�defineClass�b � b�length��

ActiveProgram p � �ActiveProgram� classOf�newInstance���

p�exec�b loader��

�

else System�out�println�x��

�

public static void main�String�� argv� throws Exception �

FileInputStream f � new FileInputStream��SelfRef�class���

byte�� data � new byte�f�available����

int c � f�read�data��

MyLoader loader � new MyLoader���

new SelfRef���exec�data loader��

�

�

Fig� �� Type mismatch leading to segmentation violation in Java

� Privacy in a Deterministic Language

Suppose we begin by considering a very simple deterministic programming lan�
guage with just variables� integer�valued expressions� assignment� conditionals�
while loops� and sequential composition� Programs are executed relative to a
memory that maps variables to integers� If a program needs I�O� then it simply
reads from or writes to some specic variables of the memory� Further� suppose
that some variables of the memory are considered private while others are public�
Every program is free to use all variables of the memory and also knows which
variables are public and which are private�

What concerns us is whether some program� in this rather anemic language�
can always produce� in a public variable� the contents of a private variable� There
are many such programs� some more complicated than others�

For instance� one can simply assign a private variable to a public one� not a
terribly clever strategy for a hacker� This is an example of an explicit channel�
Or one might try to do it more indirectly� one bit at a time� as in Figure � where
PIN is private� y is public� and the value of mask is a power of two� This is an
example of an implicit channel � It illustrates the kind of program we wish to
reject because it does not respect the privacy of PIN� We need to formalize the
security property it violates�
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while �mask �� �� �

if �PIN � mask �� �� � �� bitwise �and�

y �� y � mask �� bitwise �or�

�

mask �� mask � �

�

Fig� �� Implicit channel

��� Privacy Properties

We give a more formal statement of the privacy property we want programs to
have in this simple deterministic language�

De�nition� �Termination Security�� Suppose that c is a command and � and
� are memories that agree on all public variables� If � � c� �� and � � c� ���
then �� and �� agree on all public variables�

�The judgment � � c � �� asserts that executing command c in initial mem�
ory � terminates successfully� yielding nal memory ���� Intuitively� Termination
Security says that we can change the contents of private variables without in�
�uencing the outcome of public variables� In other words� these changes cannot
interfere with the nal contents of public variables� The above program does not
have this property� Any change in the private PIN will result in a di�erent nal
value for the public variable y�

Is the Termination Security property an acceptable privacy property for pro�
grams in our simple deterministic language� That depends on what is observable�
Consider the similar program in Figure �� If one can repeatedly run this program

while �PIN � mask �� �� � �

y �� y � mask

Fig� �� Channel from nontermination

with a di�erent mask� one for each bit of PIN� then assuming y is initially zero�
the runs will copy PIN to y� One PIN bit is leaked to y in a single run� We assume
that� after a specic period of time� if a run has not terminated then it never
will� and we move on to the next bit��

But although the program seems insecure� it satises Termination Security�
Changes to PIN cannot in�uence the outcome of y in a single run of the program�
After changing the PIN� the program may no longer terminate� but this does not
violate Termination Security since it only applies to successful termination�

Consider another property�

� The task obviously becomes much easier when we enrich the language with threads
and a clock� Now each bit can be examined by an asynchronously	running thread�
and after some timeout we can be fairly con�dent that all nonzero bits have been
properly set in y�

	



De�nition� �O�ine Security�� Suppose that c is a command and � and � are
memories that agree on all public variables� If � � c � ��� then there is a ��

such that � � c� ��� and �� and �� agree on all public variables�

Notice that we have removed one of the two successful evaluation hypotheses
from Termination Security� The property basically says that changing private
variables cannot interfere with the nal contents of public variables� nor can
it interfere with whether a program terminates� We call the property O�ine
Security because it addresses only what one can observe about a program�s
behavior if it is executed o�ine� or in batch mode �one either sees the results of
a successful execution or is notied of some timeout that was reached�� The time
it takes for a program to terminate is not observed� In a deterministic language�
O�ine Security implies Termination Security� Actually� the formulation of O�ine
Security is suitable for treating nondeterminism as we shall see� The program in
Figure � does not satisfy O�ine Security�

Unfortunately� there are other sources of channels� Consider the program
in Figure �� Again suppose we can repeatedly execute it with di�erent masks�

if �� � �PIN � mask�� � �

y �� y � mask

Fig� �� Channel from partial operation

It always terminates� sometimes abnormally from division by zero� The e�ect�
however� will be the same� to copy PIN to y one bit at a time�

Hence if we include partial operations like division� we have a situation where
a program might either get stuck �terminate abnormally� or run forever� depend�
ing on a private variable� So we need yet a stronger o�ine security property� Ba�
sically it needs to extend O�ine Security with the condition that if c terminates
abnormally under �� then it does so under � as well �����

None of the preceding properties addresses any di�erence in the time required
to run a program under two memories that can disagree on private variables�
These di�erences can be used to deduce values of private variables in timing
attacks on cryptographic algorithms� For example� a private key used in RSA
modular exponentiation has been deduced in this fashion �
��� Di�erences in tim�
ing under two memories can be ruled out by requiring that executions under the
two memories proceed in lock step� a form of strong bisimilarity� This property�
which might be called Online Security� is the most restrictive thus far� But is it
really necessary for mobile programs� That depends on what is observable�

��� What is Observable�

Key to judging whether any of the preceding properties is necessary is deter�
mining what is observable in the model� Whether a privacy property is suitable
depends on how it treats observable events� Notice that there is an observation
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being exploited in the preceding examples� even within a single run� that allows
one PIN bit to be leaked to y� It arises due to the synchrony of sequential compo�
sition� Termination Security does not take this kind of observation into account�
which makes O�ine Security a better choice� Recall that O�ine Security does
not account for timing di�erences� but does this matter with mobile code� The
key question is who observes the clock�

One can imagine examples in languages like Java where a downloaded applet
begins by sending a startup message back to a server on the originating machine
and then ends with a nish message� Each message is timestamped by the server
which observes a clock external to the applet� We can model this sort of behav�
ior in our simple deterministic language by adding a clock in order to record
�timestamps� on values output to memory� Then� clock observation is internal
to mobile code� This is how UDP�TCP ports should really be modeled because
a UDP or TCP server�s clock is observed by a client �applet� when it sends a
TCP segment or UDP message� This brings us to our o�ine assumption�

In a mobile code setting� the only observable events are those that can be

observed internally� that is� from within a mobile program using primi�

tives of the language�

So the Online Security property may be overly restrictive for mobile programs
written in our simple deterministic� sequential language�

Generally� the more a program can observe� the more opportunity there is
for leaking secrets� As we have seen� opportunities can arise with the most basic
primitives� for instance� synchronous operations�

� Nondeterminism and Privacy

Now suppose we introduce nondeterminism via a simple concurrent language� It
is a multi�threaded imperative language based on the �o�� model of concurrency
����� As before� we have commands and their sequential composition� A thread

is a command that belongs to a thread pool �called an object pool in �o����
A thread pool O maps thread identiers to threads� Threads communicate via
shared variables of a global memory� A thread pool executes in one step to
a new thread pool by nondeterministically selecting a thread and executing it
sequentially in one step� More precisely� thread pool transitions are governed by
the following two rules�

O��� � c

�c� ��
s
����

�O� ��
g

���O � �� ���

O��� � c

�c� ��
s
���c�� ���

�O� ��
g

���O�� �� c��� ���

Thread pool transitions are denoted
g

�� �global transitions� and sequential tran�

sitions
s
��� The rst rule treats thread completion and the second treats thread

continuation� Intuitively� the rst rule says that if we can pick some thread �com�
mand� � from pool O� and execute it sequentially for one step in the shared
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memory �� leaving a memory ��� then the entire thread pool O can execute in
one step to a pool where � is gone and the shared memory is now ��� The second
rule treats the case where � does not complete but rather is transformed into
a continuation �command� c� that represents what remains of c to be executed
after it executes for only one step� Note that no thread scheduling policy is
specied in these rules�

With threads come new ways to cleverly leak secrets� Programs that appear
harmless can contain subtle channels for transmitting secrets� even in this very
basic concurrent language� To illustrate� we consider a system introduced by
Fine ����� It is analyzed in ��� where it is concluded that the system is secure in
the sense that �it is not possible for a high�level subject to pass information to a
low�level subject�� The system consists of two private variables� A and B� whose
di�erence is public and stored in Y� As a multi�threaded program� the system
is given in Figure ��� Thread � corresponds to a high�level user updating the

Thread � �
B �� B 	 A � v�

A �� v

Thread � �
Y �� B 	 A

Fig� �� The AB system

system with some value v that can be recovered through A� Thread � corresponds
to a low�level user reading public information from the system� The threads share
variables A and B� Imagine each of these threads being executed repeatedly and
that v is a constant input parameter� The claim is that � cannot transmit any
information to � since � always sees only B � A� But this requires that � be
atomic� for suppose A and B have initial values a and b respectively� If we execute
the rst assignment of � followed by the assignment in �� then Y becomes B � a�
which is b � a � v � a� Since Y is initially b � a� we know v � a� the di�erence
between two successive values input by �� So � can observe a di�erence controlled
by �� The interleaving might be frequent in a real implementation if v is large�

What kind of privacy property would rule out this sort of threaded program�
First� we have to rule out any analog to the Termination Security property be�
cause it applies to deterministic programs only� Instead� suppose we ask whether
the outcomes of public variables can be �preserved� under changes to private
variables� So in the example above� we consider an execution that leaves Y equal
to b � a � v � a� say for v � a� Now we ask whether this outcome is possible
when v is changed to a di�erent value� say w� No matter how we interleave� Y
ends up being b � a or b � a � w � a� The outcome is no longer possible� We
have then the following property �����

� We ignore a third thread for low	level writing to the system�
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De�nition� �Possibilistic NI�� Suppose � and � are memories that agree on

all public variables and that �O� ��
g

��
�

�fg� ���� Then there is a �� such that

�O� ��
g

��
�

�fg� ��� and �� and �� agree on all public variables�

It is a kind of noninterference �NI� property that closely resembles Suther�
land�s notion of Nondeducibility on inputs ����� Also notice the similarity between
this property and O�ine Security�

The program in Figure � does not satisfy Possibilistic NI� Another interesting
example that does not satisfy Possibilistic NI is given in ����� It uses a main
thread and two triggered threads� each with a busy�wait loop implementing a
semaphore� to copy every bit of a private PIN to a public variable� In fact� the
program always produces a copy of the PIN in a public variable whenever thread
scheduling is fair �every thread is scheduled innitely often��

Practical extensions of our simple concurrent language make it easy to con�
struct multi�threaded programs that violate Possibilistic NI� For example� simple
programs have the property until a scheduling policy� like round�robin time slic�
ing� is introduced ����� Adding a clock� even without threading� leads to simple
programs that fail to have the property� The same is true in the presence of
thread priorities and preemption� So the outlook for guaranteeing this property
in practical programs written in languages like Java appears bleak�

If a multi�threaded program satises Possibilistic NI then changes to private
variables cannot interfere with the possibility of public variables having a certain
outcome� But the changes may interfere with the probability of that outcome�
If so� there is a probabilistic channel� Consider� for instance� the program in
Figure �� Suppose that X stores one bit and is private� Y is public� and all threads

Thread � �
Y �� X

Thread � �
Y �� �

Thread � �
Y �� �

Fig� �� A probabilistic channel

have an equal probability of being scheduled� Is the program secure� Well� it
satises Possibilistic NI so it cannot reveal X with certainty� But it is likely to
reveal X� Suppose X is �� Then the probability that Y has nal value � is 
���
When X is �� however� the probability that Y has nal value � drops to ���� In
e�ect� the private variable interferes with the probability that Y has nal value ��
This kind of interference Gray calls probabilistic interference ��
�� He describes a
property called P�restrictiveness that aims to rule it out in systems� The property
can be viewed as a form of probabilistic noninterference ���� ����

� Logics and Static Analyses for Privacy

From the discussion thus far� it would appear that a privacy property is de�
veloped independently of any logic for reasoning about it� While this has been

�




generally true of security properties studied for computer systems� it is usually
not so for programming languages� Typically one starts with an intuitive idea of
secure code and gives some sort of logic to capture the notion� The next step is to
make the intuition precise so that the logic can be proved sound�� To illustrate�
we sketch a logic for reasoning about privacy below� It is actually a type system
utilizing subtypes� A complete description can be found in ���� where it is proved
that every well�typed deterministic program satises Termination Security�

We take security classes� like L �low or public� and H �high or private�� as
our basic types which we denote by � � Some typing rules treat explicit channels
and others implicit channels� Below is the typing rule for an assignment x �� e�

	 � x � � acc� 	 � e � �
	 � x �� e � � cmd

���

In order for the assignment to be well typed� it must be that

� x is a variable of type � acc�eptor�� meaning x is capable of storing informa�
tion at security level � � and

� expression e has type � � meaning every variable in e has type � ��

Information about x is provided by 	 which maps identiers to types� So� the
rule states that in order for the assignment x �� e to be judged secure� x must
be a variable that stores information at the same security level as e� If this is
true� then the rule allows us to ascribe type � cmd to the entire assignment
command� The command type � cmd tells us that every variable assigned to by
the command �here only x� can accept information of security level � or higher�

These command types are needed to control implicit channels like the one in
Figure �� For example� here is the typing rule for conditionals�

	 � e � �
	 � c� � � cmd

	 � c� � � cmd

	 � if e then c� else c� � � cmd

�
�

The idea is that c� and c� execute in a context where information about the
value of e is implicitly available�when c� executes� the value of e was true and
when c� executes� the value of e was false� Hence if e � � � then c� and c� must
not transmit any information to variables of security level lower than � � This is
enforced by requiring c� and c� to have type � cmd �

Here is the typing rule for while loops�

	 � e � �
	 � c � � cmd

	 � while e do c � � cmd

���

� Unfortunately� it is quite common to see either the logic skipped entirely� in favor of
an algorithm that implements one�s intuition� or soundness not treated adequately�
if at all� It is important to make intuitions about security precise�

� Keep in mind that unlike type preservation� an expression of type � here does not
mean one that evaluates to a value of type � � Values �in our case integers� have no
intrinsic security levels�
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and the typing rule for sequential composition�

	 � c� � � cmd

	 � c� � � cmd

	 � c�� c� � � cmd

���

The typing rules for expressions and commands simply require all subexpres�
sions and subcommands to be typed at the same security level� For example� we
require in rule ��� that the left and right sides of an assignment be typed at
the same level� A similar requirement is imposed in rule �
�� Yet we do want to
allow upward information �ows� such as from public to private� But the typing
rules can remain simple because upward �ows can be accommodated naturally
through subtyping� For example� we would have L � H � but not H � L� The
subtype relation can naturally be extended with subtype inclusions among types
of the form � cmd and � acc� The type constructors cmd and acc are antimono�

tonic� meaning that if �� � ��� then the relation is extended with

�� cmd � �� cmd and �� acc � �� acc

Intuitively� antimonotonicity merely re�ects the fact that a reader capable of
reading at one security level is capable of reading at a lower level�

Also� there are two coercions associated with variables� If x � � var � then x � �
and also x � � acc� That is� variables are both expressions and acceptors� So if

	�x� � H var and 	�y� � L var

then there is an explicit upward �ow from y to x in x �� y� The assignment can
be typed in two ways� We can type the assignment with x � H acc by coercing
the type of y to H � or we can type the assignment with y � L by coercing the
type of x to L acc through the antimonotonicity of acceptor types�

Now properties of the type system can be proved� For example� there are
type�theoretic analogs of the well�known simple security property and ��property
�Connement� of the Bell and LaPadula model �

� 
���

Lemma� �Type Analog of Simple Security� If 	 � e � � � then for every variable
x in expression e� 	 � x � � �

Lemma� �Type Analog of Connement� If 	 � c � � cmd � then for every variable
x assigned to in command c� 	 � x � � acc�

Intuitively� Simple Security guarantees no �read up� in expressions� whereas
Connement ensures no �write down� in commands� For example� Simple Se�
curity ensures that if an expression has type L� then it contains no variables
of type H var � Likewise� Connement guarantees that if a command has type
H cmd � then it contains no assignments to variables of type L var �

With these two properties� one can now prove that every well�typed program
in our simple deterministic language satises Termination Security ����� The
type system is not limited to privacy� One can also introduce integrity classes T
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�trusted� and U �untrusted�� such that T � U � Now if a program satises Ter�
mination Security� then no trusted variable can be �contaminated� by untrusted
variables ����

To achieve stronger security properties� such as O�ine Security it is necessary
to restrict the typing of while loops� Intuitively� a while loop can transmit
information not only by assigning to variables� but also by terminating or failing
to terminate� This idea was exploited by the program in Figure �� To prevent
such �ows� one can restrict rule ��� to the following�

	 � e � L
	 � c � L cmd

	 � while e do c � L cmd

���

With this stricter rule� one can show that every well�typed program satises
O�ine Security ����� By restricting the typing of partial operations like division�
it is also shown in ���� that well�typed programs satisfy a stronger o�ine security
property that addresses aborted executions as well as nontermination� Finally�
under rule ��� it can be shown that every well�typed concurrent program satises
Possibilistic NI �����

An advantage of the type system is that it a�ords type inference� Procedures
are polymorphic with respect to security classes� Principal types are constrained
type schemes that convey how code can be used without violating privacy �����
Notice that type checking here is not merely an optimization in that it replaces
run�time checks� as in traditional type checking� Denning�s early work on pro�
gram certication and the lattice model over 
� years ago ����� showed that one
cannot rely only on run�time mechanisms to enforce secure information �ow� a
direction that had been pursued by Fenton ���� Static analysis is needed to reveal
implicit channels like the one in Figure ��

There is still some question about how the type system should be deployed in
a mobile code setting� Currently we are exploring its use in a code certication
pipeline aimed at certifying the security of e�commerce applications written in
Java� But we can also imagine the need for analyzing some lower�level inter�
mediate language like Java virtual machine instructions� The loss of program
structure at this level would likely make it more di�cult to specify a simple type
system for privacy�

��� Decidability

The type system above is decidable� A type inference algorithm is given for it in
����� A desirable property of any logic for reasoning about privacy is that it be
decidable� However� there is often tension between decidability� soundness and
completeness in such logics� One is naturally unwilling to compromise soundness
so that can mean having to give up completeness for decidability�

For instance� the problem of deciding whether a program� written in our
simple deterministic language of Section �� has the Termination Security prop�
erty is not recursively enumerable� This means that any sound and recursively
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enumerable logic for reasoning about Termination Security must be incomplete�
Now the question is how much have we lost by conceding incompleteness� There
must be examples of code that have some desired security property� but which
cannot be proved in the logic� For example� here is a snippet of code in our
sequential language that satises Termination Security� yet is untypable in the
system above if X is private and Y is public�

X �� Y�

Y �� X

Further� thread � in the program of Figure � is also untypable� The question of
how much has been lost often depends on whether such examples arise frequently
in practice� If they do� then the logic may yield too many �false positives� for it
to be practical� This has been a primary criticism of information��ow checkers
for some time ����

� Conclusion

We have explored the relationship between some aspects of language design and
security issues� The issues we considered in this paper� namely type safety and
privacy� are really independent of code mobility� Nonetheless� the prospect of
migrating code that executes nancial transactions� or extends the functionality
of a network switch� makes them relevant�

So what sort of advice can we o�er designers of secure languages� First�
security should not be viewed as a programming language graft� The literature
is lled with attempts that treat security this way� Languages have a fundamental
role in secure computation and should be designed with this in mind� A designer
might begin by establishing the security properties of interest for a language and
then attempt to introduce functionality while preserving them� This seems more
promising than treating security afterward� Also� one cannot overemphasize the
need for a formal semantics� It is essential for proving soundness and basic safety
properties like those in �
���

We strongly believe that secure languages should have simple� compositional
logics for reasoning about the security properties of interest� Compilers should
be able to incorporate decision procedures for these logics as static analyses that
programmers can easily understand� For instance� the type system of Section �
is simple and has an e�cient type inference algorithm for inferring type schemes
that convey how programs can be used securely�

As far as privacy properties go� one has to know what is observable� and
how it can be observed� There are some known pitfalls� In a concurrent set�
ting� beware of any ability to modulate one thread with another� for instance�
through a semaphore ����� Time�sliced thread scheduling is also problematic� It
does not preserve the Possibilistic NI security property in languages like Java�
Java threading and its many features make it easy to build covert timing chan�
nels� This suggests that it is unsuitable for secure e�commerce applications� The
subset� Java Card 
��� proposed for smartcards� may be better since it has no
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threading and supports the notion of a transaction ��	�� Designing a secure con�
current language that is �exible and admits simple and accurate static analyses
is the subject of current research�
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